
Get The Most From
Your Software Project

Sometimes business people feel a little lost when they embark on a
software project. They don’t know what to expect, nor how to contribute.

Follow these tips and you’ll be well placed to make a solid start on your
project, work effectively with your developer, and learn the rest as you
go.

East Software is a small company located in Sydney, where the sun always shines
and everything seems possible.

East Software
156/6-14 Oxford Street
Darlinghurst NSW 2010
Australia

http://www.EastSoftware.com.au
info@EastSoftware.com.au
Telephone +61 (2) 9361 3536

Copyright © East Software 2012

http://www.EastSoftware.com.au
mailto:info@EastSoftware.com.au

Do Nothing

The first thing you should do when you
consider having a software system built
is to ask yourself “Do I really need this?”

You can’t really answer this question at
this very early stage because you don’t
know yet what it will cost and what
benefits it will bring. But it’s important to
ask this question at several key stages.

Before you even start talking to a
software developer, figure out exactly
what problem you’re trying to solve.
Estimate what the problem costs you in
terms of time spent executing a manual
process, the likelihood and cost of
mistakes, the missed benefits of other
things you could be doing instead, and
so on. This is the cost of doing nothing.

After you’ve got a price quotation from
one or more software developers,
compare those prices with your cost of
doing nothing. If it’s cheaper to do
nothing, then cancel the project right
now.

If you decide to proceed with the project
then consider splitting it into several
smaller phases rather than doing it all in
one go. At the end of each phase, ask
yourself whether it’s worthwhile
continuing to the next phase.

If it’s cheaper to do

nothing, then cancel
the project right now.

Think First

When you engage a software developer
the first thing they’ll do is start asking
lots of questions. This is called
requirements gathering or requirements
analysis, and its purpose is to work out
what the software should do.

You might say “I want to track sales
versus targets,” and it probably seems
straightforward: add up the sales in each
month, divide by the target, and you get
a percentage performance figure. If that
really is all you need your software
system to do, then the project will be
finished in no time and everyone will be
happy.

But the devil is in the details. Where will
the sales figures come from? What
format will they be in? Will you want to
alter individual targets from time to time?
How will you want the calculated results
presented? Even for a small project
there will be many questions.

Of course it’s not necessary to work out
every detail in advance. Indeed, some
questions won’t even arise until later in
the project, as the developer learns
more about your business and gets
deeper into the nuts and bolts of the new
system.

The important thing is that the developer
should know enough about your
business to make good progress, and to
avoid taking wrong turns along the way.

Poorly understood requirements can
have serious consequences for the
project cost. If an important feature is
identified only after the project is
underway, the developer may have to
redo significant design work. Generally,
the later an error is discovered the more
expensive it is to fix.

Research indicates that 68% of
companies have poor requirements
analysis capability1. In these companies,
50% of their projects have budget
overruns of more than 60%. Clearly it’s
important to think carefully about your
requirements before you commit to the
project.

Generally, the later
an error is discovered

the more expensive
it is to fix.

1 Keith Ellis, “The Impact of Business
Requirements on the Success of Technology
Projects”, IAG Consulting, 2008

Break The Project Into Phases

In all but the simplest of projects the
requirements usually can be divided into
three groups:

must have

would be useful

icing on the cake

You may find it helpful to break the
project into phases, implementing only
the must-have requirements in the first
phase. If there are many must-haves
then pick just the top five or six and
move the rest into the second phase.
This way you can start realising the
business benefits as soon as the most
important features are ready, rather than
waiting for everything to be finished.

After you’ve used the system for a short
while you’ll develop a better idea of
which features are truly useful. You
might find that some features you had
planned for later phases don’t seem so
useful any more, and you can save time
and money by dropping them.
Conversely, you’ll probably come up with
new ideas as you use the new system.
With the insights gained from practical
use, as you discover what’s possible and
what’s useful, you’ll be better placed to
plan the next phase.

Industry research shows that smaller
projects tend to have smaller budget
overruns2. Other studies have concluded
that the majority of features that are built
are never used, and that attempting to
do too much is now the leading cause of
project failure3.

If there are many

must-haves then

pick just the top five
or six.

2 Keith Ellis, “The Impact of Business
Requirements on the Success of Technology
Projects”, IAG Consulting, 2008
3 Standish Group, Chaos Report v3, 2008

Involve Your IT Department Early

If you have an IT department then it’s a
good idea to talk to them early, while
you’re planning your project. If you don’t
have a dedicated in-house IT
department then maybe you use an
external consultancy firm, or you might
have an IT-savvy employee who keeps
your systems working. Whichever model
you use, your project will proceed more
smoothly if you involve your IT folks
early.

Your IT people may be able to solve
your business problem more easily in
some other way, saving you the trouble
and expense of having custom software
built. Or they may see problems that you
hadn’t thought of. They might see
opportunities to take advantage of
existing IT systems and infrastructure,
and can cooperate with your software
developer to integrate your new system
more seamlessly into your organisation.

And after the system is built you’ll
probably need your IT department’s help
to install it on your computers.
Installation often requires administrator
privileges, and connections to file
servers and databases and so on. If your
IT folks are already familiar with the
project then they’ll know what to do, so
installation can go ahead without delay.

Most IT departments are happy to work
with external software development
companies. The earlier you introduce
your developer to your IT folks, the
better their relationship will be when it
comes time to deploy your new system.

Expect Delays

Every project runs into problems from
time to time. Industry research estimates
that somewhere between 60% and 80%
of projects take longer than planned, or
exceed the budget4.

Common reasons for project overruns
include the original estimate being over-
optimistic and unanticipated difficulties
arising.

Some studies estimate the average
overrun to be about 30%5 or 40%, but
overruns of 100% are not uncommon.
So it seems reasonable to expect an
overrun in your project, and if it costs
only 50% more than expected then you’
re lucky.

Some developers will commit to a fixed
price. This is good for you because it
means you know exactly what it will cost.
But in order to commit to the fixed price
the developer will have factored this risk
of overrun into the price.

It seems reasonable to

expect an overrun in
your project, and if it
costs only 50% more
than expected then

you’re lucky.

4 K. Moløkken and M. Jørgensen, “A Review
of Surveys on Software Effort Estimation”,
IEEE International Symposium on Empirical
Software Engineering (ISESE 2003), pp223-
230, 2003.
5 Dexter Whitfield, “Research Report No. 3”,
European Services Strategy Unit, 2007

Do Your Own Testing

Software systems are always complex
and always have bugs. Your developer
will use his skill, and modern techniques,
to eliminate most bugs before he hands
the system over to you. But inevitably
there will be bugs that just didn’t surface
in the development laboratory.

You’ll almost certainly use the software
in slightly different ways to how the
developer intended, and your computer
environment and other software systems
will interact with your new system in
ways that the developer couldn’t
anticipate.

So you’ll need to do your own testing.
This means that you’ll need to set aside
some time, and you’ll need to plan for it.
Ask the developer for advice on how to
conduct your testing, and how to report
bugs when you find them.

You’ll almost certainly
use the software in

different ways to
how the developer

intended.

Train Your Users

The success of your project will be
measured by the benefits it delivers to
your business. And no matter how good
the software is, if your users don’t use it
then it can’t deliver any benefit.

You and your developer will have been
thinking about the new system for a
while, and so you’ll know how it works,
which buttons to push, what goes where,
and so on. But when you introduce the
system to your users it will be totally new
to most of them, and things that seem
obvious to you won’t be obvious to them.
Most users will try their best to figure it
out, but if they can’t get it to work then
they’ll give up and simply stop using it.

The most effective way to train users is
to let them use the software in a direct
face-to-face meeting, while you explain
it. If possible, do not simply show them –
they’ll remember better if they do things
themselves rather than just watching you
do them.

If you have a large number of users, or if
they’re in distant locations, then a face-
to-face meeting might not be feasible.
Maybe you could train a small number of
key people directly, and then let them go
out and train others. Or maybe all you
need is to send everyone an email
describing the major features of the
system.

The success of your
project will be

measured by the

benefits it delivers to
your business.

Establish A Support Facility

All software systems need some kind of
support service. Support requests range
from simple “How do I ...?” questions to
reports of crashes and other serious
problems. You can probably handle
some of these issues yourself, but for
others you’ll need help from your IT
department or from the software
developer.

It’s important that the people who use
your system can get support when they
need it, otherwise they’ll just stop using
it. For some businesses this means 24/7
support from a helpdesk, while others
are happy with a 9am-5pm Monday-
Friday arrangement. Some need an
instant response, and some can wait an
hour or two. Think about what’s
appropriate for your business.

Software development organisations
generally aren’t set up to offer 24/7
helpdesk support, and anyway if you
need that level of support then you
probably have an IT department or
external consultancy who can do it. But
still your software developer should be
available to offer advice and to handle
critical issues within a reasonable time.
Nobody understands the internal
workings of the system better than the
people who built it.

In some environments support is
delivered within the framework of a
Service Level Agreement (SLA). This
defines who handles the different types
of support request, and a timeframe
within which to do so. For example, your
own helpdesk might handle first-level
issues such as simple questions about
how to perform a task. Issues that need
more consideration might be passed to a
more technical team in your IT
department, and if they can’t solve them
then they may refer them to the software
developer for deeper analysis and
possible bug fixing.

However you handle support, the
purpose is always the same: To keep
your business users working with the
minimum of disruption.

The purpose of
support is to keep your

business users

working with
minimum disruption.

